

Fibroblasts as tissue-specific mesenchymal stem cells: A re-evaluation

Songül Ünū*

ABSTRACT

This letter explores the evolving concept of fibroblasts as tissue-resident mesenchymal stem cells, challenging their classical definition by highlighting their phenotypic plasticity, multipotent capacity, and role in tissue homeostasis and regeneration.

Key words: Fibroblasts, Mesenchymal Stem Cells, Tissue Niche, Plasticity, Regeneration, Differentiation

Dear Editor

The traditional dichotomy between fibroblasts as simple stromal cells and mesenchymal stem cells (MSCs) as defined multipotent progenitors is increasingly difficult to sustain. We propose a paradigm shift: viewing fibroblasts not as terminally differentiated cells, but as a diverse population of tissue-specific MSCs that are primed by their unique microenvironment.

Phenotypic and Functional Overlap

The International Society for Cellular Therapy (ISCT) criteria for MSCs—plastic adherence, tri-lineage differentiation, and expression of specific surface markers (CD73, CD90, CD105)¹—are remarkably met by numerous fibroblast populations². Dermal, gingival, and cardiac fibroblasts, among others, have demonstrated the ability to differentiate into adipogenic, chondrogenic, and osteogenic lineages under appropriate conditions *in vitro*³⁻⁵. Furthermore, their shared immunomodulatory functions, particularly the suppression of T-cell proliferation, blur the functional distinctions between the two cell types⁶. This suggests that the standard ISCT criteria may be insufficient to delineate a true MSC from a multipotent fibroblast.

The Tissue-Specific Niche Defines Function

The critical factor that may define a fibroblast as a tissue-specific MSC is its niche. Fibroblasts from different anatomical locations exhibit distinct transcriptional profiles, largely governed by developmental HOX code expression. This "positional mem-

ory" dictates their specific role in tissue homeostasis and repair. A dermal fibroblast is specialized for skin repair and ECM remodeling, while a periodontal ligament fibroblast is primed for cementogenic and osteogenic tasks. Rather than being a separate entity, the classical bone marrow MSC can be viewed as one specific, and perhaps more primitive, member of a broader family of mesenchymal progenitor cells, with fibroblasts representing their specialized, tissue-committed counterparts.

A Spectrum of Plasticity

The relationship is best described as a dynamic spectrum. Upon tissue injury, resident fibroblasts can be "re-activated" or "de-differentiated," acquiring a more primitive, MSC-like state with enhanced proliferative and multipotent capabilities. This plasticity is a key regenerative mechanism. The converse is also true; MSCs introduced into a specific tissue niche can adopt a fibroblastic phenotype and function. This bidirectional interconversion strongly argues against a rigid classification.

Unresolved Questions and Future Directions

Key questions remain. If fibroblasts are indeed tissue-specific MSCs, what are the definitive markers that confirm their stemness versus a terminally differentiated state? Are the observed differences in differentiation potency merely a reflection of their degree of niche-specific commitment? Resolving these questions requires single-cell transcriptomic and epigenetic analyses of fibroblast populations across tissues to identify subpopulations with true stem cell properties.

Stem Cell Centre, Malatya, Turkey

Correspondence

Songül Ünū, Stem Cell Centre, Malatya, Turkey

Email: songulunu@gmail.com

History

- Received: 2025-01-15
- Accepted: 2025-05-30
- Published Online: 2025-06-30

DOI :10.15419/8a925j79

Check for updates

Copyright

© Biomedpress. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Cite this article : Ünū S. Fibroblasts as tissue-specific mesenchymal stem cells: A re-evaluation. *Sci. Tech. Dev. J.* 2025; 12(1):419.

ABBREVIATIONS

ECM: Extracellular Matrix, **MSC:** Mesenchymal Stem/Stromal Cell, **ISCT:** International Society for Cellular Therapy

ACKNOWLEDGMENTS

None

AUTHOR'S CONTRIBUTIONS

None.

FUNDING

None

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

CONSENT FOR PUBLICATION

Not applicable.

DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES IN THE WRITING PROCESS

The authors declare that they have used generative AI and/or AI-assisted technologies in the writing process

before submission, but only to improve the language and readability of their paper.

COMPETING INTERESTS

The authors declare that they have no competing interests.

REFERENCES

1. Dominici M, Blanc KL, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. *Cytotherapy*. 2006;8(4):315–317.
2. Ugurlu B, Karaoz E. Comparison of similar cells: Mesenchymal stromal cells and fibroblasts. *Acta histochemica*. 2020;122(8):151634–151634.
3. Ceylan M, Schoenmaker T, Hogervorst JM, Jansen ID, Schimmele IM, Prins CM. Osteogenic Differentiation of Human Gingival Fibroblasts Inhibits Osteoclast Formation. *Cells*. 2024;13(13):1090–1090.
4. Junker JP, Sommar P, Skog M, Johnson H, Kratz G. Adipogenic, chondrogenic and osteogenic differentiation of clonally derived human dermal fibroblasts. *Cells Tissues Organs*. 2010;191(2):105–123.
5. Monterubbianesi R, Bencun M, Pagella P, Woloszyk A, Orsini G, Mitsiadis TA. A comparative in vitro study of the osteogenic and adipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts. *Scientific Reports*. 2019;9(1):1761–1761.
6. Blasi A, Martino C, Balducci L, Saldarelli M, Soleti A, Navone SE. Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. *Vascular cell*. 2011;3(1):5–5.