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ABSTRACT
Introduction: Hepatic fibrosis is considered as the initial state of any chronic hepatic disease; pro-
gression causes accumulation of extracellular matrix (ECM) and develops into cirrhosis. In case of
liver failure, transplantation was considered as the only suitable therapy but due to the hurdles
in transplantation, therapy using stem cells was promoted. Mesenchymal stem cells (MSCs) are
widely used for the treatment of a variety of diseases. Oxidative stress at the damage site causes
poor MSC proliferation and engraftment. Thus, it is necessary to induce antioxidants with MSCs
to enhance potency. Methods: To explore the therapeutic potential of zinc sulfate (ZnSO4) and
MSCs on carbon tetra chloride (CCl4)-induced hepatic toxicity, 6-8 week-old female albino mice
(BALB/c) were used. Initially, mice were infected with CCl4 and then intra-peritoneally injected with
MSCs only, ZnSO4 only, or a combination of MSCs and ZnSO4 . MSCs were isolated from femur
and tibia of mice, and were cultured under control conditions. Results: The morphological re-
sults revealed that in contrast to MSC-only therapy, ZnSO4 enhanced the therapeutic potential of
MSCs when administered to CCl4-injuredmice. Biochemically, level of serumAlanine Transaminase
(ALT) and total bilirubinwas found to be significantly decreased in ZnSO4 +MSC transplantedmice.
Histopathological examination also revealed that ZnSO4 + MSC transplantation induced a strong
anti-apoptotic effect on CCl4-injured liver. Reverse transcription polymerase chain reaction (RT-
PCR) detected a noteworthy anti-fibrotic effect of MSCs in the presence of ZnSO4 , down-regulation
of apoptotic marker (Bax), and up-regulation of anti-apoptotic (Bcl-xl) and hepatic (Albumin) mark-
ers. Conclusion: Thus, it was concluded that the presence of ZnSO4 reduced oxidative stress,
enhanced the proliferation rate of MSCs, and significantly attenuated hepatic fibrosis.
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INTRODUCTION
Liver is one of the largest organs and centralmetabolic
hub of the human body. Hepatocytes are the main
building block of the liver and perform a variety of
functions, such as protein synthesis, detoxification,
carbohydrate, lipid metabolism and bile production.
Hepatic fibrosis is the trademark of any chronic liver
disease and is the major cause of morbidity and mor-
tality. Cirrhosis is the final-stage of hepatic disease
which occurs when the fibrotic tissues replace the
healthy tissues1. In liver fibrosis, repeated injury
causes tissue alteration, which is observed by extreme
production of extracellular matrix (ECM) with the
formation of scar tissue covering the region of dis-
ease2. Themain causes of liver fibrosis are alcohol us-
age, viral hepatitis B and C (HBV andHCV), hepatitis
due to autoimmune disorder, obesity, diabetes, para-
sitic disorder, metabolic disorder, biliary disease, as
well as vulnerability to toxins, chemicals and drugs 3.
It was reported globally that liver cirrhosis was a ma-
jor cause of over one million deaths in 2010, equiva-
lent to 2% of all deaths globally4. Chronic liver dis-

eases account for 1 in 40 deaths worldwide 5. Hep-
atocytes have a remarkable efficiency to repair the
infected liver and restore its normal functionalities;
when the inherent power of repairing hepatocytes is
lost, liver transplantation remains the only efficient
treatment. This procedure is highly invasive and lim-
ited due to the scarcity of donors, it is not exempt of
complications6.
Nowadays, stem cells (SCs) are broadly used for the
regeneration of hepatocytes. The high potency of
cell multiplication and multipotency are the primary
characteristics of a stem cell. The proliferation and
differentiation capability of stem cells depends on
the source and type of stem cells, and is referred
to as “stemness”7. If suitable conditions with ac-
curate signals are provided, stem cells can differen-
tiate into variety of cell types and lead to forma-
tion of organs and, finally, a complete organism.
Therefore, SCs have valuable properties for regener-
ative medicine8. Based on differentiation, SCs are
classified into totipotent, pluripotent, multipotent or
unipotent9, while based on source and properties,
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they are categorized into embryonic SCs (ESCs), in-
duced pluripotent SCs (iPSCs), and non-embryonic
SCs/adult stem cells (ASCs)10.
ESC therapy has some limitations; these include safety
and ethical issues, as their acquirement involves the
destruction of embryos due to which ethical concerns
are raised. Due to this limitation of ESCs, ASCs pro-
vide another platform for therapy of liver diseases, es-
pecially bone marrow derived stem cells (BMSCs) 11.
ASCs also have the ability of proliferation, differenti-
ation and regeneration of tissues12. ASCs are classi-
fied into hematopoietic stem cells (HSCs) which are
blood-forming cells, and Mesenchymal Stem Cells
(MSCs), which are somatic-forming cells. It had been
thought that HSCs in the bone marrow could not dif-
ferentiate into the variety of cells, such as nerve cells
in the brain.
MSCs have the ability of self-renewal and differenti-
ation into a variety of cell types. MSCs have fibrob-
lastic appearance with multipotent nature and can be
isolated from a wide range of tissues but bonemarrow
and gingiva are the key sources of MSCs 13,14. There,
MSCs are responsible for the maintenance of the mi-
croenvironment (niche) and provide support to HSCs
in the bone marrow15. MSCs can also be differenti-
ated into hepatocytes to treat different types of liver
disease 16,17.
Oxidative stress is a pathogenic mechanism, whereby
exposure of the liver to oxidative stress damages the
liver and leads to hepatic fibrosis. Cell damage in-
creases with the increase in concentration of reactive
oxygen species (ROS) in the liver. The use of antiox-
idants reduces the amount of these free radicals18.
Enzymes involved in the synthesis and breakdown of
carbohydrates, lipids, proteins and nucleic acids, and
in the metabolism of other micro-nutrients, contain
zinc as one of their key components. Zinc has been
demonstrated to protect against hepatotoxicity pro-
duced by a variety of chemicals 19.
The aim of the present study was to investigate the
therapeutic potential of MSCs, in the presence of Zn,
against CCl4-induced liver toxicity in mice.

METHODS
Preparation of animals
Six to 8 week-old female albino mice (BALB/c),
with weight ranging from 25-30 g, were bought
from the Directorate of Veterinary Research Insti-
tute, Peshawar, Pakistan. All mice were housed in a
pathogen-free environment at optimum temperature
(20-25 ◦C) and were provided a standard rodent diet
with appropriate cycle of light and dark. TheBioethics

Committee of the Biochemistry Department, Ab-
dul Wali Khan University, Mardan (AWKUM) ap-
proved all the laboratory procedures. For therapeutic
treatment of liver fibrosis, different mouse treatment
groups were assigned, such as positive control group
(only infected with CCl4), negative control group
(untreated group), MSC-only treated group, Zn-only
treated group, and MSC + Zn treated group. Three
mice were used for each group (triplicates) and a few
were used to isolate bone marrow cells. Initially, CCl4
was injected in the body of mice via intra-peritoneal
route, at a dose of 1 µ l/g (do you mean 1 µg/ml) per
gram body weight, dissolved in an equal volume of
olive oil (1:1 ratio). The injection was given with 1 ml
insulin in syringe- twice a week for 4 weeks- to induce
hepatic fibrosis.

Isolation and characterization of MSCs
MSCs were isolated from femur and tibia of Balb/C
mice according to the protocol described by Khan et
al.20, and were cultured in Dulbecco’s Modified Ea-
gle’s Medium (DMEM) (Gibco/Thermo Fisher Scien-
tific, Waltham, MA, USA), supplemented with 10%
fetal bovine serum (FBS) (Biowest, Nuaillé, France)
and 100 IU/ml penicillin and 100 µg/ml strepto-
mycin (both from Capricorn Scientific, Ebsdorfer-
grund, Germany) in 25-mm culture flasks. The cul-
ture was maintained in a humidified incubator sup-
plied with 5% CO2 at 37◦C.The stem cells were char-
acterized as MSCs by the method described by Oyagi
et al.21. After 3 days of culturing, in each flask the
medium was removed completely and washed with
PBS (twice) to remove non-adherent cells (HSCs)
while the adherent cells (MSCs) remained attached.
After washing, fresh medium was replenished in the
culture flask, which was then placed back into the in-
cubator for proliferation of MSCs.

Transplantation of MSCs and Zn inmice
For transplantation ofMSCs, firstly, the cells were iso-
lated from the cultured flasks. For cell detachment
trypsin (1x) was added into the culture flask for 5-10
minutes. Then, the cells were centrifuged at 5000 rpm
for 10 minutes. After centrifugation, the supernatant
was discarded and the pellet diluted in 100-200 µ l of
PBS. The pellet containing about 1x106 MSCs in 1ml
syringe was used for transplantation.
Mice fromMSC-treated group receivedMSCs (1×106

cells in 1 mL PBS) at a dose of 1x106 cells/100
µ l PBS/mouse through the mouse tail portal vein.
Zinc-treated mice were injected with 100 µ l/mice
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ZnSO4.7H2O intra-peritoneally, whereas mice from
MSC + Zn treated group receive a dose of 100
µ l/mice ZnSO4.7H2OwithMSCs (1x106 cells/100 µ l
PBS/mouse), also through the tail portal vein.

Biochemical analysis

After dissection of the mice, blood samples were col-
lected from the hearts ofmice of each group through 1
ml syringe. The bloodwas centrifuged at 8000 rpm for
10 min to isolate the serum. Serum ALT and biliru-
bin levels were determined through spectrophotome-
ter using commercial kits (Vitro Scient, Inc., Cairo,
Egypt).

Histopathological analysis

After excising the mouse liver from each animal, the
hepatic tissues were fixed in 10% formalin. After 24-
72 h of fixation, the tissues were moved to different
degrees of alcohol for dehydration. Then, the paraf-
fin sections were prepared and cut into 5-µm sections
by a rotary microtome (ROBUS). After bathing in
gelatin-containing ultrapure water, the sections were
made with the help of microscopic slides and allowed
to dry at 37◦C overnight. Then, the sections were
stained with hematoxylin (H) and eosin (E) reagents.
The sections were studied through a microscope at
10Xmagnification for histological changes (i.e. apop-
tosis and collagen deposition).

qPCR analysis for gene expression

RNA was isolated from liver tissue homogenate us-
ing Trizol kit (Invitrogen, Carlsbad, CA, USA). Af-
ter isolation of RNA, cDNA was synthesized through
RT-PCR using 2 µg of RNA and oligo-dT primers
at 42◦C for 60 minutes using a kit (Invitrogen).
The purity/concentration of RNA and cDNA was
checked using Nanodrop spectrophotometer (COL-
IBRI, TITERTEKBERTHOLD).Next, 100–500 ng/ml
of cDNAwas amplified through PCR using a standard
PCR kit. The sequences of the primers are indicated
in Table 1. The qPCR protocol consisted of 40 cy-
cles at 94◦C for 4 minutes, 56◦C–58◦C for 45 sec, and
72◦C for 30 sec, followed by a final extension step at
72◦C for 10 minutes. Gene expression levels of hep-
atic marker (Albumin) and apoptotic marker (Bax)
were evaluated at the mRNA level by RT-PCR in all
mouse samples using Biorad CFX96 Software. In this
study, β -actin was used as a reference marker. Ex-
pression levels of Bax, Bcl-xl, and Albumin in the dif-
ferent mouse groups were different, whereas the ex-
pression level of β -actin was constant in all groups.

Therefore, β -actin was used as standard and the ex-
pression level of each of the other markers was com-
pared to it; the relative expression of the target genes
was determined by comparing to the reference gene
(β -actin).

Bradford assay analysis
Whole protein was isolated from liver using Trizol
method (Invitrogen) and BSA was used as a stan-
dard protein. Six different dilutions of BSA were pre-
pared in PBS, along with the sample protein. Each
cuvette contained 1 ml of standard solution and 1.5
ml of Bradford reagent. This was followed by incu-
bation at room temperature for 10 min. Then, the
absorbance of each cuvette was measured at 595 nm.
The graph for standard curve values was plotted (the
x-axis represented the micrograms of standard pro-
tein and the y-axis represented the absorbance read-
ing at 595 nm). The sample protein absorbance was
quantified using the same above method and the un-
known protein concentration was calculated by com-
parison to the standard protein.

Statistical analysis
Standard errors (±) and mean values of various
treatments were determined by analysis of variance
(ANOVA). Significant difference was separated using
Duncan’s multiple range test, set at P≤ 0.05.

RESULTS
Isolation and characterization of MSCs
After the removal of tibia and femur bone from the
dissected mice, bone marrow cells were isolated by
flushing prepared media through it (Figure 1 B-E).
Bone marrow cells were centrifuged at 8000 rpm for
10 min along with media to collect the cell pellet
formed at the bottom. Bone marrow mainly consists
of two types of cells: HSCs and MSCs. The adherent
property of MSCs allow them to become attached to
the surface of culture flasks. After 3 days, the medium
was discarded and the flask was washed with PBS to
remove non-adherent cells (i.e. HSCs); adherent cells
were fed with fresh DMEM. This process was carried
on until the cells were between 70-90 % confluence.
Hepatocyte growth factor (HGF)was not added to the
medium, therefore the MSCs were not differentiated
into hepatocytes, specifically. The successful prolif-
eration of MSCs was investigated through a hemo-
cytometer; moreover, about 1x106 MSCs were taken
into a 1ml syringe and transplanted into the tail vein
of fibrotic mice. Mice were dissected after 10 days
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Table 1: Primers with their sequence, annealing temp and product size

PCR primer Sequence (5’-3’) Annealing
temperature

Size in
bp

Albumin (F)
Albumin (R)

GCTGTAGTGGATCCCTGGTG
GCTGTAGCCTTGGGCTTG

56◦C 196

Bax (F)
Bax (R)

TGGAGATGAACTGGACAGCA
CAAAGTAGAAGAGGGCAACCAC

58◦C 152

Bcl-xl (F)
Bcl-xl (R)

TTCGGGATGGAGTAAACTGG
AAGGCTCTAGGTGGTCATTCAG

58◦C 150

β -actin (F)
β -actin (R)

GCTGTGTTGTCCCTGTATGC
GAGCGCGTAACCCTCATAGA

58◦C 106

Figure 1: 6-8weeks aged albinomice (BALB/c) weight ranging from25-30g (A),mice dissection (B), isolated
tibiaand femurbones (C), removalof joints frombones (D),bonemarrow isolation (E), comparativeanalysis
of livermorphology of negative control (F), positive control (G),MSCs treated (H), Zinc treated (I) andMSCs
+ Zinc treated (J).

of transplantation. After dissection, liver tissues and
blood were collected to assess the level of hepatic fi-
brosis regeneration.

Comparative analysis of hepatic morphol-
ogy

The hepatic morphology of all the groups of mice was
studied. In MSC + Zn treated group of mice, the liver
morphology was more similar to that of the negative
control mouse group (Figure 1 F), than to the other
treatment groups. The livers of MSC + Zn treated
mice were reddish in color, with smooth surface and
less scarring (Figure 1J).The liver morphology of the
positive control mice was more brownish and pale
in color, and shrinkage in structure could be seen
(Figure 1G). However, themorphological response of
the livers of the mouse group treated with MSCs only
or Zinc only, revealed a moderate reduction in hep-
atic fibrosis with less reddish black color, rough sur-

face and few fibrotic scars. Hepatic morphological re-
sults clearly indicated that MSCs- in the presence of
Zinc- was more effective in reducing by fibrosis.

Biochemical tests of hepatic function
Serum levels of ALT and bilirubin were compared
across all groups of mice using ALT and bilirubin kits
(Vitro Scient).
The serum level of ALT in mice treated with MSCs +
Zinc was significantly lower (66.63±9.24 units/L) as
compared to the positive control group (297.03±10.3
units/L), MSC-treated group (indicate the values), or
Zinc-treated group (indicate the values) (Figure 2A).
TheALT value in the positive controlmouse group re-
vealed that there was remarkable incline in ALT (liver
enzyme) level. ALT value of MSC + Zn treated group
of mice was closer to the mean value of the negative
control (56.43±6.8 units/L), indicating normalization
of hepatic functions (Figure 2 A).
Serum bilirubin level was also analyzed in all groups
of mice. The level of total bilirubin is an indicator for
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Figure 2: Liver function analysis; level of serumALT in all treatments (A), level of serum total bilirubin in all
treatments (B).

apoptosis; the higher the level of bilirubin, the higher
the injury status. This sort of trend was observed
when total bilirubin level was detected in all samples.
The highest bilirubin level was recorded in the posi-
tive control mouse group. However, a significant de-
cline in the serum level of bilirubin was recorded in
MSC-only and Zinc-only treated groups of mice. The
lowest level of serum bilirubin was recorded in MSCs
+ Zinc treated group of mice (0.52±0.14 mg/dl),
which was even notably lower than that of the pos-
itive control group (1.17±0.04 mg/dl) (Figure 2 B).
These results clearly indicate that MSCs, in the pres-
ence of Zinc, have high ability to reduce liver fibrosis
by reducing the apoptotic effect.

Histopathological analysis of hepatic fibro-
sis
Liver sections of all groups of mice were stained
with standard hematoxylin and eosin (H&E) stain, as

shown in Figure 3. The liver sections of the positive
control mice had an abundance of hepatocytic apop-
tosis, whichwas represented by the irregularly-shaped
individual cells with hyper-eosinophilic cytoplasm
and fragmented nuclei withmore central vein conges-
tion and higher liver collagen deposition (Figure 3B).
Mice treated with onlyMSCs and only zinc revealed a
moderate level of reduction in apoptosis, vein conges-
tion and collagen deposition (Figure 3 C and D). The
livers ofMSC-only and zinc-only treatedmice showed
a remarkable decrease in liver collagen, central vein
congestion, and number of apoptotic hepatocytes. A
comparative study demonstrated that the liver sec-
tions of MSC + Zn treated mouse group were more
similar to that of the negative control mouse group,
indicating that the liver had showed signs of restoring
its normal functioning (Figure 3).
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Figure 3: Histopathological analysis of fibrotic liver of treated and untreated mice (10X). Negative control
(A), Positive control (B), MSCs treated (C), Zinc treated (D), MSCs + Zinc treated (E).

Gene expression analysis
The levels of apoptotic, anti-apoptotic, and hepatocyte
marker expression were analyzed for all the samples
by real-time PCR. In this study, β -actin was used as
a reference marker. The expressional levels of Bax,
Bcl-xl and Albumin across the different groups were
different, whereas the expression level of β -actin was
constant in all groups. Therefore, β -actin was used as
a standard, and the expression level of the othermark-
ers was compared to it.
The expression of Baxmarker was down-regulated in
MSC + Zn treated group (1.54±0.15), as compared
to the positive control group (4.7±0.3), MSC-treated
group (3±0.3), and Zinc-treated group (2.9±0.2).
However, the reduction in expression of Bax marker
in MSC-only or Zinc-only treated groups of mice was
quite similar to that of the positive control group;
however, a significant reduction was detected in MSC
+ Zn treated mice.
Bcl-xl is an anti-apoptotic marker; higher expression
of this marker indicates normal functioning of the
liver. The expression ofBcl-xlmarker was upregulated
inMSC + Zn treated group (5.80±0.4), similar to that
of the negative control group (6.36±0.3), whereas the
lowest expression ofBcl-xlmarker was recorded in the
positive control group. Significant levels of Bcl-xl ex-
pression were also observed for MSC-only or Zinc-
only treated groups (Figure 4 C).
Maximum regulation of albumin (a hepatocyte
marker) was recorded in the MSC + Zn treated group
of mice (1.86±0.1). Similar to the Bcl-xl marker, the
albumin marker also displayed an elevated expres-
sion in the MSC-only and Zinc-only treated groups,
as compared to the positive control group (Figure 4
D).
After analyzing the expression of β -actin through RT-
PCR, the results showed that β -actin expression in
all experimental groups was similar and, thus, it was
used as a standard (mean of 16.46±1.36). The expres-
sion levels of all othermarkers were comparedwith β -
actin to determine expression level of Bax, Bcl-xl and

albumin, in the different groups to analyze the effect
of CCl4, MSCs only, Zinc only, and MSC + Zn on the
experimental mouse groups.

Bradford assay analysis
The protein concentration was greater in the posi-
tive control group due to deposition of ECM pro-
teins, including collagen fibers. Free radicals were
formed due to induction of CCl4, which was involved
in the depletion of glutathione (GSH).The absorbance
of samples from MSC + Zn treatment was 0.28 nm,
which was close to the absorbance for negative con-
trol (Figure 5). The absorbance values of the un-
known concentration samples were plotted on the
graph to determine the concentration. The concen-
tration of positive control (50 µg/ml) was greater than
the treated groups due to degradation of ECM in the
treated groups. The concentration of negative control
was 10 µg/ml, MSC-treated group was 40 µg/ml, Zn-
treated group was 30 µg/ml, and MSC + Zinc treated
group was 20 µg/ml.

DISCUSSION
Excessive accumulation of fibrillar ECM leads to de-
velopment of hepatic fibrosis. This ECM is gradually
replaced by interstitial collagens, particularly colla-
gens I and III, proteoglycans, and fibronectin 22. Due
to excessive production of fibrillar collagen and fi-
bronectin, the normal architecture of the liver can
become disrupted; these changes can lead to abnor-
mal functioning of hepatocytes and parenchymal cell
damage23. Previous studies have shown that MSCs
have been used for the treatment of both acute and
chronic liver diseases. There is a body of clinical and
experimental evidence that confirms that transplanta-
tion of MSCs can restore the liver’s normal functions
in acute and chronic hepatic diseases 24.
Besides its other functions, the lover also plays a vi-
tal part in the maintenance of zinc homeostasis- as
a rapid exchanging repository for zinc storage. Hep-
atic diseases are also a cause of alteration in Zn levels;
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Figure 4: Comparative analysis of different genes expression in treated and untreatedmice. Comparison of
β -actin expression (A), Comparison of Bax gene expression (B), Comparison of Bcl-xl expression (C), Comparison
of albumin expression (D).

Figure 5: Graph between absorbance and concentration, determination of total protein concentration in
unknown sample using Bradford assay.
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low Zn level in the liver is related with disturbed liver
function and regeneration. Zinc deficiency was found
to be increased in an animal model of acute liver in-
jury which was stimulated by a hepatotoxic agent (i.e.
carbon tetrachloride; CCl4)25. The properties of Zn
are protection against vitamin E depletion, stabilizing
membrane structure, inhibiting endogenous free rad-
ical production, contribution to the structure of extra-
cellular superoxide dismutase, and protection ofDNA
from damage (as it is a component of many DNA re-
pair proteins)26.
Membranes of Zn-deficient cells were found to be rich
in concentrations of malondialdehyde (MDA), and it
has clearly been indicated that peroxidation of mem-
brane phospholipids take place more in those cells
which have less zinc concentration. Hepatic lipid per-
oxide development and proline hydroxylase activity
can be down-regulated by the injection of Zn this is
because liver has an active role in Zn metabolism and
tissues mount up Zn in the form of Zn metalloth-
ionein (MT)27.
These twomechanisms are implicated in the defensive
effect of Zn against CCl4 toxicity. Zinc inhibits the
expression of CYP2E1, preventing toxic CYP-derived
CCl4 metabolites formation; this mechanism was
shown in a previous study in which 17% repression of
CYP2E1 mRNA expression by Zn was reported. The
second possible mechanism is that Zn is the central
component of metallothionein, which shows antioxi-
dant action against reactive oxygen species by remov-
ing the free radicals28.
Therefore, the present work follows up on previous
data; in this study, we hypothesized that the com-
bined effect of MSCs and Zn would minimize oxida-
tive stress and also enhance the regeneration of the fi-
brotic liver. In the present study, MSCs were isolated
and transplanted into infected mice- in presence of
Zn. Zinc enhanced the proliferation frequency of cells
and caused considerable beneficial effects on liver fi-
brosis (induced by CCl4) in mice.
ROS reacts with sulfhydryl groups, such as GSH, pro-
tein thiols and antioxidant enzymes, and causes dele-
terious effects on them. The excessive production
of free radicals causes membrane lipid peroxidation
and they bind to larger biological molecules 29. In
CCl4-treated rats, the hepatic content of GSH was ex-
tremely reduced, while MSCs increased hepatic GSH
content and entirely stopped their inhibition30. An
antioxidant with hepatoprotective activity can be ef-
fective against hepatic damage, such asCareya arborea
against CCl4 induced liver injury in rats31. In another

study, CCl4-induced injury in mice was efficiently re-
duced by the pre-treatment of Zn28. The present re-
sults are in correlation with these findings; the opti-
mum dose of zinc strongly enhances the antioxidant
effect and proliferative ability of MSCs by increasing
the hepatic MT content to normal levels in the liver
tissue. This significantly reduces the concentration of
free radicals and stops the succession of liver fibrosis.
Rungruang et al. reported that normal mouse liver
is reddish black in color, compared to normal mouse
liver. Indeed, the liver of diseased mice is changed
from a reddish black to a brownish black or pale
color32. Similar morphological results were observed
in our studies. The liver morphology of MSC + Zinc
treated group of mice showed more resemblance with
the negative control mice- with reddish black color,
in contrast to MSC-only or Zn-only treated groups of
mice. The liver morphology of positive control mice
was brownish pale in color (Figure 1). Thesemorpho-
logical results demonstrate that MSCs- when com-
bined with Zinc- have a remarkable antifibrotic effect
on CCl4, as compared to MSC-only treatment.
AST andALTactivitieswere increased in plasma, with
lipid accumulation and hepatocytic necrosis reported
when rats were exposed to CCl4 33. In the present
work, compared to the positive control group, the
liver enzymatic activity in MSC-only treated group
was decreased. However, a significant reduction of
liver enzymes to the normal levels was observed in
MSC + Zinc treated group (Figure 2 A and B).
Histological changes demonstrated that MSC trans-
plantation recovered liver function and reversed hep-
atic necrosis, deposition of collagen, and inflamma-
tion34. The histopathological examination of CCl4-
damaged livers exhibited a noteworthy increase in
liver collagen adjacent to hepatic lobules, leading to
large fibrous septa with central vein congestion and
apoptotic hepatocytes. The combination ofMSCs and
Zinc showed considerable anti-apoptotic effects on
liver with less collagen deposition (Figure 3).
Zinc sulfate increases the hepatic conversion of amino
acids into urea, which indicates clinical and biochemi-
cal improvements. In alcoholic and hepatitis patients,
the concentration of amino acids are high in contrast
to control subjects35. The Bradford assay resembles
in this study are in accordance with previous findings;
that is, there was a clear reduction of total protein ob-
served in the MSC + Zn treated group of mice, while
the concentration of total protein was high in the pos-
itive control group.
The qPCR analysis demonstrated that the expres-
sion of apoptotic markers, such as Bax. was up-
regulated in CCl4-infected hepatocytes, while the ex-

276



Progress in Stem Cell, 6(2):269- 278

pression of anti-apoptotic marker, Bcl-xl, was down-
regulated. In the same manner, it has been shown
that the expression of hepatocyte marker, albumin ,
was inversely proportional to the concentration and
duration of CCl4 treatment36, which are similar re-
sults to those observed in our present study. Zn and
MSC transplantation significantly restored the abnor-
mal expression of Bax, Bcl-xl, and albumin, as com-
pared to MSC-only transplantation in CCl4-infected
mice. Thus, the combination of Zn and MSCs facili-
tated high proliferation and regenerative capability of
MSCs, as compared to MSC-alone transplantation, to
diminish liver fibrosis.

CONCLUSION
Overall, from morphological, biochemical and
histopathological results- along with Bradford assay
and RT-PCR results- it can be concluded that BMSCs,
in combination with zinc, had a high capacity to re-
generate fibrotic liver and restore some of its normal
functions. Zinc enhanced the regenerative ability of
MSCs by increasing the proliferation rate of these
cells for the reduction of liver fibrosis. Additionally,
zinc displayed a strong antioxidant activity which
regulated the enzymes present in the liver, such as
glutathione and metallothionein, which neutralized
free radicals and reduced the rate of hepatocyte
damage. Due to these two reasons, the combination
of zinc and MSC represents a potentially promising
stem cell-based therapy for the treatment of liver
fibrosis.
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