
Progress in Stem Cell 2022, 9(1-2):318-336

Open Access Full Text Article Systematic Review

1School of Dental Sciences, Universiti
Sains Malaysia
2Faculty of Dentistry, Universiti
Teknologi MARA
3Faculty of Medicine, Universiti
Teknologi MARA

Correspondence

Muhammad Huzaimi Haron, Faculty of
Medicine, Universiti Teknologi MARA

Email: drhuzaimi@uitm.edu.my

History
• Received: Jul 30, 2022
• Accepted: Sep 26, 2022
• Published: Nov 14, 2022

DOI : 10.15419/psc.v9i1-2.413

Copyright

© Biomedpress. This is an open-
access article distributed under the 
terms of the Creative Commons 
Attribution 4.0 International license.

The Effect of the Dental Stem Cell Secretome on Tissue
Regeneration: A Systematic Review

Nusaibah Sakinah Nordin1,2, Maryati Md Dasor2, Farha Ariffin2, Zurairah Berahim1,
Muhammad Huzaimi Haron3,*

Use your smartphone to scan this
QR code and download this article

ABSTRACT
Secretome therapy is a promising approach in tissue regeneration because it can reproduce most
of the advantages of cell-based therapies. This review aims to investigate the most prominent ef-
fect of using dental-derived secretome on tissue regeneration using a systematic review approach.
A systematic electronic search was conducted via the PubMed, Scopus and Wiley online library
databases for studies published in English up to October 2020. All the articles from the databases
were screened, and the criteria for inclusion and exclusion were applied. Forty papers were in-
cluded in the study, whereby there were 16 in vitro studies and 11 in vivo studies with different
animal models. No clinical trial has been reported yet. The most studied DSCs were human SHEDs
(12 studies), followedby humanDPSCs (11) and human PDLSCs (5). Themajority of the studies used
secretome from human SHEDs and DPSCs. TGF-β1 is the most frequently detected protein in the
secretome, which comes from six types of DSCs, followed by NGF and NT-3, which were found in
five different types of DSC secretome. The compositions of the secretome were found to promote
the regeneration of the tissues through their neurogenic, angiogenic, osteogenic and odontogenic
effects, with the majority of studies reviewed reporting using them for nondental tissue regener-
ation. From this review, DSC-CM reported favorable tissue regeneration potential; however, many
factors need to be explored in future research with regard to the application of secretome delivery,
particularly DSC-CM, in the clinical setting.
Key words: dental-derived secretomes, paracrine mediated therapy, tissue regeneration

INTRODUCTION
In regenerative medicine, tissue engineering has
arisen as a promising approach for the restoration,
repair and healing of organ and tissue functions, es-
pecially in tissues susceptible to disease, injury, and
degeneration. At present, tissue engineering studies
are focused on adult mesenchymal stem cells, which
have become among the most frequently explored
types of cells in this field1. Mesenchymal stem cells
(MSCs) are undifferentiated multipotent cells that
possess self-renewal capabilities and can differenti-
ate into various mesoderm cell lineages, such as os-
teogenic, adipogenic and chondrogenic lines. Aside
from bone marrow and adipose tissue, cells possess-
ing stem cell characteristics have also been success-
fully isolated from different parts of the tooth. These
isolated cells are known as dental stem cells and in-
clude dental pulp stem cells (DPSCs)2,3, stem cells
from exfoliated deciduous teeth (SHED)4, periodon-
tal ligament stem cells (PDLSCs)5, stem cells from
apical papilla (SCAP)6,7, dental follicle progenitor
cells (DFCs)8 and gingival tissues derived from mes-
enchymal stem cells (GMSCs)9,10.

The majority of dental-derived stem cells (DSCs) can
be obtained from human exfoliated deciduous teeth
and orthodontically extracted premolars and third
molars. These sources of stem cells are considered bi-
ological waste in dentistry despite containing multi-
potent stem cells4,11. Premolars are the most com-
mon teeth indicated for extraction in orthodontics
and are often ideal for the relief of anterior and pos-
terior crowding. However, the decision of extract-
ing between the first or second premolars depends on
several factors, including the anchorage requirement,
the severity of crowding, and the amount of overbite
and overjet12. Extraction of the third molar for or-
thodontic reasons is rare, as both orthodontists and
oral surgeons must make appropriate decisions and
consider the potential risks and benefits of the pro-
cedure specifically pertaining to the surgical removal
of asymptomatic impacted third molars13. There are
several orthodontic reasons for the extraction of third
molars that aim to prevent late mandibular incisor
crowding14, to allowmolar distalization15 and to pre-
pare for orthognathic surgery 16.
Experimental research using stem cells showed that
they produce reliable and effective tissue regenera-
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tion. However, there are several shortcomings in
terms of the clinical application of therapy using
MSCs17: (i) the host immune response might cause
rejection of transplanted MSCs in the long term, (ii)
there could be an imbalance and disturbance in the
homeostasis of local tissue, (iii) the risk for tumor for-
mation may increase due to long-term ex vivo expan-
sion and/or due to immunosuppression of the local
tissue, and (iv) the chances for ectopic tissue forma-
tion by the transplanted MSCs become higher13.
To overcome these drawbacks of using MSCs, an in-
creasing number of studies have reported the use of
the MSC secretome18. Secretome are various cellu-
lar products, such as cytokines, growth factors and
enzymes secreted by MSCs19,20. These biologically
active chemical products play significant roles in di-
verse aspects of tissue function, repair and homeosta-
sis21,22. The function of the secretome is to suppress
immune responses23, reduce oxidative stress13, stim-
ulate angiogenesis24, and induce the recruitment,
proliferation and differentiation of endogenous stem
cells25. Secretome are easily obtained via in vitro
culture of various cells, where they are contained or
extracted from the culture media, often referred to
as conditioned media (CM). In various studies, CM
from stem cells has shown promising results in regen-
erative medicine and tissue engineering26, including
CM from SHED and CM from healthy and inflamed
periodontal tissue27,28.
When compared to stem cell therapy, secretome ther-
apy offers potential benefits because it can reproduce
most of the advantages of cell-based therapies with
minimal side effects. Furthermore, using the secre-
tome as therapy provides many practical advantages,
such as ease of preservation, sterilization, and packag-
ing1. Apart from that, they also have an extended du-
ration of storage without losing their properties29,30,
ease in gauging proper dosages and can be produced
in mass20 as well as a noninvasive extraction pro-
cedure that may save both time and cost of produc-
tion24. Despite the potential benefits of the secre-
tome, the effect of the dental-derived secretome on
specific types of tissue has not been systematically re-
viewed. The focus question is to systematically review
in vitro, in vivo and clinical studies on the effect of
the dental-derived secretome in terms of tissue regen-
eration potential. Thus, we aim to identify the most
prominent effect of using a dental-derived secretome
on tissue regeneration using a systematic review ap-
proach.

METHODS
The Preferred Reporting Items for Systematic Review
(PRISMA) checklist was used as a guideline in con-
ducting this review 31. A comprehensive and system-
atic electronic search of MEDLINE via PubMed, Sco-
pus andWiley online library databases was conducted
for studies published in English up to October 2020
(Figure 1).

Study design
This study systematically reviewed and summarized
all the published studies regarding the use of dental
stem cell-derived conditioned media in tissue regen-
eration by searching electronic databases.

Inclusion criteria
The included studies were in vivo, in vitro and clinical
studies on the dental stem cell secretome and tissue
regeneration. Language was limited to English, and
no manual or gray literature search was included.

Exclusion criteria
All studies on embryonic stem cells, bone marrow
stem cells, induced pluripotent stem cells, other types
of mesenchymal stem cells, cell therapy, secretome
derived from ameloblasts, odontoblasts, dental ep-
ithelium, narrative reviews, systematic reviews and/or
meta-analyses.

Information sources and search strategies
A comprehensive search of online databases was im-
plemented throughMEDLINE via PubMed, SCOPUS
and Wiley Online Library. All studies published up
to October 2020 were included. A Boolean operator
was used for the search strategy by combining terms
and free text words: “dental stem cells” AND se-
cretome, “dental secretome” OR “paracrine therapy”
AND regeneration, “dental stem cells” AND “con-
ditioned medium” AND regeneration, dental AND
“paracrine mediated therapy”. Then, all duplicate pa-
pers were removed by the reference manager software
(Mendeley).

Study selection
The data were extracted independently by four au-
thors (N.S. N, M.M. D, F. and M.H. with an extrac-
tion form specifically designed for this study. Then,
any disagreement on the data extracted was resolved
through discussion and mutual consensus between
the authors. Interrater reliabilities were calculated us-
ing Cohen’s Kappa (κ = 0.704, which indicates sub-
stantial agreement).
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Figure 1: Flow diagram for the papers selection.

Data collection process
For data collection, necessary information was ex-
tracted as follows: the characteristics of the study (au-
thors, year of publication, country of the study con-
ducted), type of study design (in vitro, in vivo, clinical
studies), source of dental stem cell secretome, test for
dental stem cell markers, test and growth factors iden-
tified from the secretome, test and analysis for regen-
eration with the findings, clinical test used, and any
biomaterials used for regeneration.

RESULTS
Study overview
A total of 40 studies were selected after thorough
screening by the authors, as listed inTable 1. Of these,
16 are in vitro studies, and 11 are in vivo studies with
various types of animal models. The remaining 13
studies were combinations of in vitro and in vivo inter-
vention studies. There were no clinical trials reported.
Nine studies were excluded because the studies used
CM fromHertwig’s epithelial root sheath (HERS) (2),

study on genetically modified dental stem cells (1),
study on differentiated human dental pulp (1), regen-
eration studies done using stem cells not the CM (3),
not a tissue regeneration study (1), and insufficient in-
formation (1).
The source of dental-derived stem cell secretome is
from either humans or animals. There were 29 studies
that used human dental stem cells as the source of the
conditioned media, while nine studies used animal
dental stem cells, such as stem cells from rats, pigs and
dogs. One study used both dental stem cells from hu-
mans and porcines, whereby they utilized tooth germ
cells. Another study did not specify the source of
tooth germ cells used.
The source of the secretome used in all the studies
varies from dental pulp stem cells (DPSCs), human
exfoliated deciduous teeth (SHEDs), stem cells from
apical papilla (SCAPs), dental follicle stem cells (DF-
SCs), periodontal ligament stem cells (PDLSCs), gin-
gival mesenchymal cells (GCMs) and tooth germ cells
(TGCs). TGCs can be further subcategorized into
apical tooth germ cells (APTGCs), embryonic tooth
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 Cell 2022, 9(1-2):318-336Table 1: Summary of studies selected

Year (Location) Study setting Secretome cellular
source (Organism)

Stem cell
marker
reported
(Tech-
nique)

Secretome
proteomic
analysis

(Technique)

Effects (details)

Others

2009 (China) In vitro and in
vivo

APTGC (rat) Yes (FC) No x
(cementogenic)

32

2010 (USA) In vitro DPSC (human) No No x 33

2010 (China) In vitro and in
vivo

ETGC (rat) No No x x 34

2011 (China) In vitro DFC (rat) No No x 35

2011 (China) In vitro and in
vivo

TGC (human and
porcine)

No No x 36

2013 (Japan) In vitro DPSC (human) Yes (FC) No x
(anti-

inflammatory,
anti-apoptotic)

37

2014 (China) In vitro DFC (rat) No No x 38

2015 (Japan) In vitro and in
vivo

DPSC (porcine) No
(referred
previous
work)

Yes (WB) x 39

2015 (Japan) In vivo SHED (human) Yes (FC) Yes
(multiplex
assay)

x
(anti-apoptosis,

anti-inflammatory)

40

Continued on next page
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 Cell 2022, 9(1-2):318-336Table 1 continued

Year (Location) Study setting Secretome cellular
source (Organism)

Stem cell
marker
reported
(Tech-
nique)

Secretome
proteomic
analysis

(Technique)

Effects (details) Reference

Others
2015 (Japan) In vivo SHED (human) No Yes (WB) x

(anti-
inflammatory)

41

2015 (Japan) In vitro DPSC (dog) Yes (FC) No x x x x
(anti-apoptotic,
chemotactic)

42

2015 (Japan) In vitro and in
vivo

SHED (human) No Yes (ELISA) x x 43

2015 (Japan) In vitro and in
vivo

SHED (human) No No x
(anti-

inflammatory)

40

2016 (Japan) In vitro and in
vivo

DPSC (porcine) No No x x 44

2016 (Japan) In vivo PDLSC (human) No Yes
(LC/MS)

x 45

2016 (Japan) In vitro DPSC (human) No No x x
(chemotactic,
proliferative)

46

2017 (Norway) In vitro and in
vivo

DPSC (human;
normoxic and hypoxic)

No
(referred
previous
work)

Yes (ELISA) x x 47

Continued on next page
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 Cell 2022, 9(1-2):318-336Table 1 continued

Year (Location) Study setting Secretome cellular
source (Organism)

Stem cell
marker
reported
(Tech-
nique)

Secretome
proteomic
analysis

(Technique)

Effects (details) Reference

Others

2017 (Italy) In vitro and in
vivo

PDLSC (human;
hypoxic)

No Yes (WB) x
(anti-

inflammatory)

48

2017 (Japan) In vivo SHED (human) No
(referred
previous
work)

Yes (ELISA) x x x
(anti-

inflammatory)

49

2017 (Sweden) In vitro and in
vivo

SCAP, DPSC, PDLSC
(all human)

Yes (FC) Yes (ELISA) x 50

2017 (India) In vitro SCAP, DPSC, DFC (all
human)

Yes (FC) Yes
(multiplex
ELISA)

x 51

2017 (Japan) In vitro DPSC (human) Yes (FC) No x x
(chemotactic,

anti-
inflammatory,
anti-apoptosis)

52

2017 (Italy) In vitro GMSC (human) Yes (FC) Yes (WB) x x
(anti-

inflammatory)

53

Continued on next page
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 Cell 2022, 9(1-2):318-336Table 1 continued

Year (Location) Study setting Secretome cellular
source (Organism)

Stem cell
marker
reported
(Tech-
nique)

Secretome
proteomic
analysis

(Technique)

Effects (details) Reference

Others

2018 (Norway) In vitro DPSC (human) No
(referred
previous
work)

Yes (ELISA) x 54

2018 (Japan) In vivo SHED (human) No No x 55

2019 (Taiwan) In vivo DPSC (rat) Yes (FC) Yes
(multiplex
ELISA)

x
(anti-

inflammatory)

56

2019 (Brazil) In vitro and in
vivo

SHED (human) Yes (FC) Yes (ELISA) x x x
(wound closure)

57

2019 (Belgium) In vitro DPSC (human) No
(referred
previous
work)

No x x
(cell migration)

58

2019 (Japan) In vitro and in
vivo

SHED (human) No Yes (ELISA) x 59

2020 (Iran) In vitro PDLSC (human) Yes (FC) No x
(SC proliferation)

60

2020 (Taiwan) In vivo SHED (human) No Yes
(multiplex
ELISA)

x
(neuro-
protective)

x
(anti-

inflammatory)

61

Continued on next page
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 Cell 2022, 9(1-2):318-336Table 1 continued

Year (Location) Study setting Secretome cellular
source (Organism)

Stem cell
marker
reported
(Tech-
nique)

Secretome
proteomic
analysis

(Technique)

Effects (details) Reference

Others

2020 (Japan) In vivo SHED (human) No Yes
(multiplex
assay)

x 62

2020 (China) In vitro and in
vivo

DFSC (rat) Yes (FC) No x x
(anti-apoptotic,

anti-
inflammatory)

63

2020 (Belgium) In vitro DPSC (human) No No x
(chondrogenic)

11

2020 (Malaysia) In vitro SHED (human) Yes (FC) Yes (ELISA) x
(anti-

inflammatory,
chondrogenic)

64

2020 (Japan) In vivo SHED (human) No Yes
(LC/MS)

x
(osteoclast
inhibi-
tion)

x
(anti-apoptotic,

anti-
inflammatory)

65

2020 (China) In vivo GMSC, PDLSC (both
human)

Yes (FC) No x 66

2020 (Japan) In vivo DPSC (human) No No x
(cell proliferation)

67

2020 (China) In vitro SCAP (human) No Yes (WB) x x 68

Continued on next page325
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 Cell 2022, 9(1-2):318-336Table 1 continued

Year (Location) Study setting Secretome cellular
source (Organism)

Stem cell
marker
reported
(Tech-
nique)

Secretome
proteomic
analysis

(Technique)

Effects (details) Reference

Others

2019 (China) In vitro TGC (unknown
organism)

No No x x 69

ELISA: enzyme-linked immunosorbent assay; FC: flow cytometry; WB: Western blot
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To ensure that the secretome obtained is of stem cell
origin, most studies would need to show the presence
of stem cell markers on the cells used. However, from
this review, there were only 18 studies reporting on
stem cell markers, whereas the remaining studies did
not. Among studies that reported stem cell markers,
15 used flow cytometry, while the remaining studies
did not state the technique used.

Proteomic analysis of the DSC secretome
Sixteen studies reported proteomic analysis of CM.
The techniques used in identifying the secreted fac-
tors from the DSCs are ELISA (8 studies), Western
blot (1), multiplex analysis (5) and liquid chromatog-
raphy tandem mass spectrometry (LC−MS/MS) (2).
The most frequently detected protein is transform-
ing growth factor-β1 (TGF-β1), which is present in
the secretome of six types of DSCs: human SHEDs,
SCAPs, DPSCs, DFCs, and GMSCs as well as rat
DPSCs. This was followed by nerve growth factor
(NGF) and neurotrophin-3 (NT-3), whichwere found
in five different types of DSC secretome. Brain-
derived neurotrophic factor (BDNF), tissue inhibitor
of metalloproteinase-1 (TIMP-1) and vascular en-
dothelial growth factor (VEGF) were detected in the
secretome from four different sets of DSCs. Further
details of the proteins detected in the DSC secretome
are presented in Table 2.
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Progress in Stem
 Cell 2022, 9(1-2):318-336Table 2: List of frequently reported protein contents of the DSC secretome

Protein Source of secretome
TGF-β1 Human SHEDs (2)

Human SCAPs (1)
Human DPSCs (1)
Human DFCs (1)
Human GMSCs (1)
Rat DPSCs (1)

Reference
Muhammad et al 2020 64, Chen et al 2020 61
Kumar et al 201651

Kumar et al 201651

Kumar et al 201651

Rajan et al 2017 53

Chen et al 2019 56

NGF Human SHEDs (2)
Human SCAPs (1)
Human DPSCs (1)
Human DFCs (1)
Human GMSCs (1)

Miura-Yura et al 2019 59, Sugimura et al 2015, 43

Kumar et al 201651

Kumar et al 201651

Kumar et al 201651

Rajan et al 2017 53

NT-3 Human SHEDs (2)
Human SCAPs (1)
Human DPSCs (1)
Human DFCs (1)
Human GMSCs (1)

Sugimura et al 2015,43 Hiraki et al, 202062

Kumar et al 201651

Kumar et al 201651

Kumar et al 201651

Rajan et al 2017 53

BDNF Human SCAPs (2)
Human DPSCs (2)
Human SHEDs (3)
Human DFCs (1)

Kolar et al 2017 50, Kumar et al 201651

Kolar et al 2017 50, Kumar et al 201651

Miura-Yura et al 2019 59, Sugimura et al 2015, 43 Hiraki et al 2020 62

Kumar et al 201651

TIMP_1 Human DPSCs (1)
Human SHEDs (2)
Human PDLSCs (1)
Rat DPSCs (1)

Gharaei et al 2018 54

Chen et al 2020 61, Hiraki et al 202062

Nagata 201645

Chen et al 2019 56

Continued on next page
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 Cell 2022, 9(1-2):318-336Table 2 continued

Source ofsecretomeProtein 
VEGF Human SHEDs (4)

Human DPSCs (3)
Human SCAPs, (1)
Human PDLSCs (2)

Reference
de Cara et al 201957, Miura-Yura et al 201959, Sugimura et al 2015,43 Hiraki et al,
202062

Gharaei et al 2018 54, Kolar et al, 2017, Fujio et al 2015 47

Kolar et al 2017 50

Kolar et al 2017 50, Nagata, 201645

GCSF Human SCAPs (1)
Human DPSCs (1)
Human DFCs (1)

Kumar et al 201651

Kumar et al 201651

Kumar et al 201651

IFN-gamma Human SCAPs (1)
Human DPSCs (1)
Human DFCs (1)

Kumar et al 201651

Kumar et al 201651

Kumar et al 201651

IGF_BP2 Human DPSCs (1)
Human SHEDs (1)
Human PDLSCs (1)

Gharaei et al 2018 54

Chen et al, 2020 61

Nagata, 2016 45

IGF-BP3 Human DPSCs (1)
Human SHEDs (1)

Gharaei et al 2018 54

Chen et al, 2020 61

TIMP-2 Rat DPSCs (1)
Human SHEDs (1)

Chen et al, 2019 56

Chen et al, 2020 61

Angiopontin-2 Human DPSCs (1) Fujio et al 2015 47

BMP-2 Human SHEDs (1) Hiraki et al, 202062

BMP-4 Human SHEDs (1) Hiraki et al, 202062

BMP-5 Human SHEDs (1) Chen et al, 2020 61

CNTF Human SHEDs (1) Sugimura et al 2015 43

FGF-2 Human SHEDs (2) Miura-Yura et al 2019 59, Hiraki et al, 2020 62

GDNF Human SHEDs (2) Sugimura et al 2015,43 Hiraki et al, 202062

HGF Human SHEDs (2) Sugimura et al 2015,43 Hiraki et al, 202062

IGF-1 Rat DPSCs (1) Chen et al, 2019 56

IGF-BP4 Human SHEDs (1) Chen et al, 2020 61

Continued on next page
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 Cell 2022, 9(1-2):318-336Table 2 continued

Source of secretome ReferenceProtein 
IGF-BP6 Human SHEDs (1)

Human PDLSCs (1)
Chen et al, 2020 61

Nagata, 2016 45

IL-10 Human SHEDs (1)
Human GMSCs (1)

Muhammad et al 2020 64

Rajan et al, 2017 53

IL-6 Human SHEDs (1) Muhammad et al 2020 64

MCP-1 Human SHEDs (2)
Human PDLSCs (1)

Kano et al 201649, Hiraki et al, 202062

Nagata, 2016 45

PAI-1 Human DPSCs (1) Gharaei et al 2018 54

PDGFR-B Human PDLSCs (1) Nagata, 2016 45

SDF-1 Human DPSCs (1) Gharaei et al 2018 54
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Functional analysis using the DSC secre-
tome

Overview
Despite using DSCs to obtain the secretome, the ma-
jority of studies we reviewed reported using the cells
for nondental applications, with neuroregeneration
being the most frequently studied (12 out of 40 stud-
ies). Others include regeneration of bone tissue,
blood vessels, salivary duct, lung, and liver. Among
the studies reporting using secretome for dental tissue
regeneration (15 studies), three areas were examined:
(i) dental pulp, (ii) periodontal, and (iii) dentin. The
effects of the secretome are summarized below.

Neurogenic effects
Among studies reporting favorable neurogenic effects
(total of 15), all but two used the DSC secretome ob-
tained from humans instead of animal cells. Most
of the studies using the human DSC secretome were
sourced from SHED, followed by secretome fromDP-
SCs, PDLSCs, SCAP, and GMSCs. When looking
from the experimental design perspective, most of the
neurogenic studies were performed in both cell cul-
ture and animal models of various neurodegenerative
diseases (such as hemorrhagic stroke, Alzheimer’s dis-
ease or diabetic neuropathy), with only six studies re-
porting the effects of cell culture experiments exclu-
sively. The most frequently reported in vitro finding
is enhanced neurite outgrowth, followed by increased
neuronal proliferation. Three out of eight studies re-
porting neurite outgrowth also reported increased ex-
pression of BDNF with secretome treatment.

Angiogenic effects
Most of the data on the angiogenic effects of the DSC
secretome were obtained from work on human um-
bilical vein endothelial cells (HUVECs), with only
one from human dermal microvascular endothelial
cells. From a total of nine studies, four of them re-
ported only in vitro findings, whereas the remainder
also reported effects in animal models. The secre-
tome were obtained from either DPSCs (6 studies; 4
of which were human cells) or SHED (all 3 from hu-
mans). Looking at the in vitro studies, five of them
reported enhanced vascular network formation, three
studies reported increased cell proliferation/viability,
while two reported observing HUVECs differentiat-
ing into VE-cadherin-positive endothelial cells.

Osteogenic/odontogenic effects
Odontogenic effects are seen when cellular differen-
tiation indicates that the formation of odontoblasts is

imminent. Odontoblasts are cells that lay down the
dentin layer during tooth formation and are usually
found in the dental pulp. During in vitro experimen-
tation, Alizarin red staining used to detect intracel-
lular mineralization was used to detect odontogenic
or osteogenic processes. In our review, we found 12
studies looking at the osteogenic/odontogenic effects
of the secretome, of which only four were sourced
from humans, while the rest were obtained from rats
and pigs. There were multiple cell types from which
the secretome were obtained, with TGCs being the
most used (in four studies), followed by DPSCs, DF-
SCs (three each), SCAP and SHED. In determin-
ing the osteogenic/odontogenic effects of the secre-
tome, the parameters reported were enhanced intra-
cellular mineralization (6 studies), increased expres-
sion of mineralization markers such as ALP, BSP and
CAP (5), and increased odontoblastic differentiation
(4). The single study that used the SHED secretome
reported inhibition of osteoclastic activity in vitro,
which was reflected as a reduction in bone resorption
under radiography in vivo.

DISCUSSION
Most of the studies reviewed here were preclinical in
vitro and animal studies reporting possible mecha-
nisms of secretome effects, which can be grouped into
neurogenic, angiogenic, osteogenic and odontogenic.
When compared to the list of proteins detected in the
secretome, a correlation can be observed between the
type of protein found and the effects seen. As an ex-
ample, TGF-ß1 is a mediator of osteogenic differen-
tiation and was repeatedly reported to be a compo-
nent of secretome from various DSCs. Furthermore,
NGF, NT-3 and BDNF are well-known neurotrophic
factors70–72 that correlate with the neuroregenerative
effects seen in a large proportion of the studies here.
While there are various sources of theDSC secretome,
those obtained from the culture of DSCs acquired
from permanent teeth (such as DPSCs and PDLSCs)
as well as deciduous teeth (called SHEDs) weremostly
reported. This is well explained by the fact that such
cells are the most easily accessible for the isolation
of stem cells73. However, not all studies confirmed
their claim that the cells they used are stem cells, as
only 19 studies reported performing stem cell marker
analysis. Other studies that did not report perform-
ing this analysis referred to previous publications in
their methodology sections. This step is crucial, as it
confirmed the stemness of the cells obtained from the
various intraoral sources74.
At present, clinical studies reporting the effectiveness
of the DSC secretome in clinical tissue regeneration
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are still absent. Until June 2021, there were only three
ongoing clinical trials using theMSC secretome regis-
tered with the US National Institute of Health (https:/
/clinicaltrial.gov), with the secretome used in all three
studies reported to be from bone marrowMSCs. This
could be due to a number of reasons. First, the po-
tential of the DSC secretome to instigate an adverse
reaction may not have been well studied. This is re-
flected in an article search on Scopus using the terms
“secretome OR (conditioned media)” AND “toxic*”,
which returned a result set that was overwhelmingly
positive in nature. While this is encouraging, the lack
of reports on the propensity of the secretome to cause
any adverse biological response will hinder their clin-
ical translation, as the content of the secretome varies
and is likely to be antigenic in nature when adminis-
tered75.
Hence, the important nonclinical studies that need to
be investigated further are on the inflammatory re-
action at the local and systemic levels. Although the
PDLSC secretomewas found to be able to suppress the
proinflammatory cytokine expression (tumor necro-
sis factor-α (TNF-α), interleukin-6 (IL-6) and IL-
1β ) of the surrounding healing tissues after 5 days
of implantation in an in vivo periodontal defect, the
findings were not statistically significant compared
to the control group45. In another study in which
the PDLSC secretome was used on the spinal cord
of a multiple sclerosis animal model, there was re-
duced expression of proinflammatory mediators (IL-
17 and interferon gamma (IFN-γ))48. Other stud-
ies that showed immunosuppression of proinflamma-
tory cytokines in animal models include the secre-
tome originating fromhuman SHEDs40,65;43, human
DPSCs52 and human GMSCs53. However, one study
showed a contradictory finding that the DPSC secre-
tome caused increased expression of proinflamma-
tory cytokines such as IL-1α , IL-6 and IL-839. To ad-
vance knowledge regarding the secretome’s biocom-
patibility, more similar studies are needed to help with
efforts to test the secretome in preclinical and clinical
human studies.
Another possible reason for the lack of clinical studies
would probably be the difficulty in determining the
exact preparation of the secretome to be used. The
preparation needs to ensure that the contents of the
secretome are properly preserved with minimal pro-
tein degradation and that it has adequate shelf life. As
mentioned in our results section, multiple lines of ev-
idence were found with regard to the composition of
the secretome, which includes a vast range of growth
factors and cytokines76.

The results from the proteomic analysis in this review
reveal that insulin growth factor-1 (IGF-1) was found
only in rat DPSC-CM56, while no IGF-1 was detected
in human DSC-CM. IGF-1 is a small peptide with
70 amino acids and has autocrine, paracrine and en-
docrine effects. The synthesis of IGF-1 mainly comes
from the liver77, and it is an essential mediator of
cell growth, differentiation and transformation78,79.
The findings from this review are in line with the re-
sults from Caseiro et al., who performed a study to
compare the profiles of metabolomic and bioactive
factors of the human umbilical cord and DPSC se-
cretome80. The profiling revealed that no IGF-1 was
found from the secretome analysis. The lack of IGF-
1 expression in the human stem cell secretome, par-
ticularly DSC-CM, might contribute to the binding
of this hormone with IGF-binding proteins (IGFBPs).
IGFBP expression depends on the tissue site and de-
velopmental stage at different concentrations in dif-
ferent body compartments81. As shown by the re-
sults from this review, IGFBP-2, IGFBP-3, IGFBP-4
and IGFB-6 were expressed by different types of DSC-
CM, such as human DPSCs, SHEDs and PDLSCs.
In addition, the difference in the expression and con-
centration of the factors may be due to the differ-
ence in the methods used to collect the conditioned
medium. The current study also found that evenwhen
the CM is derived from the same type of cells, the ex-
pression of the growth factors varied. This result may
be explained by the difference in cell numbers, culture
medium and condition as well their CM processing
method82.
Apart from various growth factors and cytokines pro-
duced by the DSC secretome, this review focused on
the effect of the DSC secretome on tissue regener-
ation. The most abundant evidence was shown in
neuroregeneration studies, which was supported by
the release of numerous growth factors (NGF, BDNF,
NT-3, NTF, GDNF and HGF). These neurotrophins
promote the differentiation and growth of neurons
and are paramount in treating neurodegenerative dis-
eases as well as neural injuries51 41 48 43. Other than
neuroregeneration, the DSC secretome has the poten-
tial to promote bone regeneration, probably due to the
increase in the migration and mineralization poten-
tial of the surrounding osteoprogenitor cells by TGF-
β183. The TGF-β1-BMP (bone morphogenic pro-
tein) signaling pathway has a pivotal role in osseous
regeneration through the elevated expression of os-
teogenic genes in the targeted cells84,85. This review
also found the potential of DSC secretome in den-
tine formation for pulp protection, periodontal regen-
eration and other tissue regeneration, such as carti-
lage, salivary duct cells, liver and lung tissues, but the
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mechanism of action is still inconclusive.

CONCLUSION
In conclusion, evidence showing the effectiveness of
theDSC secretome in neuroregeneration and bone re-
generation is encouraging. However, data from hu-
man studies are still lacking, which could impede the
translation of such works into the clinical perspec-
tive. Furthermore, the potential for the secretome to
be used in the regeneration of other tissue types, such
as smooth and skeletal muscle, needs to be explored,
as secretome content analysis has shown the presence
of the relevant factors.

ABBREVIATIONS
BDNF – brain derived neurotrophic factor
BMP – bone morphogenic protein
CM – conditioned media
CNTF – ciliary neurotrophic factor
DFCs – dental follicle progenitor cells
DPSCs – dental pulp stem cells
DSCs – dental derived stem cells
FGF – fibroblast growth factor
GCSF – granulocyte colony stimulating factor
GDNF – glial cell derived neurotrophic factor
GMSCs – gingival tissues derived mesenchymal stem
cells
Hertwig’s epithelial root sheath – HERS
HGF – hepatocyte growth factor
IFN-γ - interferon gamma
IGF – insulin like growth factor
IGF-BP – insulin like growth factor binding protein
IL – interleukin
MCP – monocyte chemotactic protein
MSCs – mesenchymal stem cells
NGF – nerve growth factor
NT-3 – neurotrophin-3
PAI – plasminogen activator inhibitor
PDGFR-B – platelet derived growth factor receptor
beta
PDLSCs – periodontal ligament stem cells
SCAPs – stem cell from apical papilla
SDF – stromal cell derived factor
SHEDs – stem cells from exfoliated deciduous teeth
TGCs – tooth germ cells
TGF-ß1 – transforming growth factor ß-1
TIMP – tissue inhibitor of metalloproteinase
VEGF – vascular endothelial growth factor
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