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ABSTRACT
iPSCs are promising and have potential benefits for medical use, understanding human organo-
genesis, and cell therapy for advanced diseases. iPSCs are derived pluripotent cells which can fur-
ther differentiate into functional human cell-lineages, such as neuronal, epithelial cells, cardiac cell,
immune cell, and blood cells, etc. Thirteen years on, the discovery of iPSC has revolutionized the
field of regenerative medicine, and also the number of clinical studies using iPSC has been grow-
ing rapidly worldwide. However, Japan is leading the race of iPSC-based studies and clinical trials
due to government support. The Japanese government implemented the world's fastest approval
system and set to host first pretrial clinical studies using iPSC derived therapeutic products. Also,
multinational companies of Japan are investing enormously in iPSC-based research formobilization
of iPSC-derived regenerative products to the research institution globally. This review presents an
overview of iPSCs, potential benefits, commercialization of iPSC, iPSC-based pretrial clinical studies,
and iPSC biobanking in Japan.
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INTRODUCTION
Induced pluripotent stem cells (iPSCs) are repro-
grammed pluripotent cells that acquire potential
sources of therapeutic cells, such as retinal pig-
ment epithelium (RPE), neurons, and cardiomy-
ocytes, etc.1. iPSC technology is a state of changing
the plasticity of differentiated cells to a pluripotent
state by ectopic expression of defined transcription
factors (Oct4, Sox2, Klf4, and c-Myc)2,3. These cells
were generated from differentiated somatic cells, such
as blood cells, fibroblast, keratinocyte, and urine cells,
etc.4. Also, other differentiated cell types and tran-
scription factors used for generating iPSCs are avail-
able in the online database5. They have characteris-
tic properties, like self-renewal and pluripotency, that
can proliferate indefinitely and differentiate into an
amalgam of developmental germ layers2,3. These cells
widen the range of application in biomedical research,
which was used to study organoidogenesis, and gen-
eration of clinical-grade therapeutic cells for replace-
ment therapy6,7. Such iPSC-derivatives become the
hope for many patients to improve their health.
As noted above, the four defined transcription fac-
tors were delivered using retroviral vectors to gen-
erate iPSCs. Thereafter, various improved delivery
methods including integrating system (lentiviral, and
inducible lentiviral), excisable system (transposon,

loxP-flanked lentiviral), nonintegrating system (ade-
noviral, Sendai virus, episomal plasmid), and DNA
free system (recombinant proteins system, modified
mRNA transfection, microRNA) were used to deliver
reprogramming factors8,9, as shown in Figure 1. In
addition, several small molecules and soluble factors
such as valproic acid, sodium butyrate, BIX-01294,
SB431542, vitamin C, Y-27632, and PS48 have been
used to enhance the efficiency of iPSCs production9.
The study is based on the analysis of relevant peer-
reviewed and published literature for this review on
iPSCs-derived therapeutic cells. All the information
was obtained from the reliable literature sources, such
as PubMed, Science Direct, Nature News, institu-
tional websites, and other authenticated public do-
mains. Several search terms like iPSCs, genomic in-
stability, therapeutic cells, clinical trials, and Japan
were used to find suitable documents. “Boolean op-
erators” (AND, OR, NOT) were used between search
terms to retrieves literature from PubMed. In this re-
view, we primarily focus on the therapeutic potential
of iPSC derivatives, iPSC technology commercializa-
tion, clinical studies, iPSC biobanking, and ongoing
research using iPSCs in Japan.

iPSCs as a source of therapeutic cells
iPSCs offer a promising platform for cell-based ther-
apy and personalizedmedicine. It was a breakthrough
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Figure 1: Schematic illustrationof iPSCgeneration and their characterization. (a) Differentiated somatic cells
are initial cells that are used for cellular reprogramming, (b) Various improved reprogramming methods used for
the efficient delivery of reprogramming transcription factors to create iPSC, and (c) Methods used to characterize
iPSC lines which are essential to continue for further differentiation studies.

in the field of regenerative medicine that was discov-
ered by Shinya Yamanaka and his colleagues in 2006 2.
His innovation of iPSCs led him to be honored with
Nobel Prize in Physiology or Medicine 2012 (jointly
awarded with Sir John B Gurdon)10. iPSCs deriva-
tives are potential therapeutic cells that overcome the
limitation of ethical issues and immune barriers as-
sociated with embryonic stem cells (ESCs) 11. In a
decade, iPSC became the brand source of Japan that
flourished globally due to its potential benefits in dis-
ease modeling, regenerative therapy, drug screening,
population health, and basic research7. Known that
iPSC-derived cells have been gaining high demand
for therapeutic use in the clinic, it is essential to de-
termine the genomic integrity that could be associ-
ated with forced reprogramming, selective pressure,
and cultural adaptation12,13. Several studies reported
the possibility of recurrent genomic alterations in iP-
SCs, such as cytogenetic abnormalities and copy num-
ber variations (CNV) that raise the potential safety is-
sues14–18. However, considerable evidence indicates
that genomic heterogeneity in iPSCs was inherited
from the parental cells carrying somatic mutations
that have a random probability distribution. Such ge-
netic variations are neither due to reprogramming nor
does it lead to an increased number of de novo mu-
tations. They reported that observed rare alterations
in parental cells existed in low frequencies detected
by sequencing-based approaches19,20. These indi-
cate iPSC reprogramming is not mutagenic that sup-
ports the safety considerations for product develop-
ment and the therapeutic application of iPSC-derived

cells in regenerative medicine, as illustrated in Fig-
ure 2. iPSC technology offers several advantages that
can be used directly for the study of developmental
biology, disease modeling, drug discovery, and cell
transplantation9. Although iPSCs have benefits in
regenerative medicine, they do have some disadvan-
tages, as listed in Table 1.
Meanwhile, genomic instability (chromosomal alter-
ations, CNVs, andmutations) in iPSCs aremajor con-
cern in clinical applications, but the key factors gov-
erning the instability is still elusive9,12,18. Instability
in iPSCs are similar to that seen in cancer cells, which
have compromised cell therapy safety21. Such tran-
sient mutation can be reduced by using starting cell
sources from the younger donor, avoiding oncogenic
transcription factors, using non-integrating vectors
system, chemical induction, and using antioxidants in
the culture medium9,12. Also, high-resolution SNP
genotyping should use to classify mutation pattern,
differentiate benign mutations, and those causing tu-
mor formations to mitigate effects of these mutations
on cell therapy22.

iPSC technology commercialization in
Japan
In a short time, iPSC benefits were well-recognized
for medicine in the global community. Thus, iPS
Academia Japan, Inc. was established at Kyoto Uni-
versity on 25 June 2008 to govern the licensing of iPSC
patents, and then promote iPSCs and related technol-
ogy transfer to industry for its commercialization23.
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Table 1: Advantages and disadvantages of iPSCs in stem cell-basedmedicine

S.N. Advantages Disadvantages

1. iPSCs are readily available and have the potential to dif-
ferentiate into therapeutic cells like RPE, neurons, and
cardiomyocytes.

iPSCs generation is time-consuming, expen-
sive, and some transcription factors used in re-
programming are oncogenic.

2. iPSCs can be differentiated to organoids that closely
mimic the human organs that are inaccessible to inves-
tigate, like retina and brain.

Reprogramming efficiency is low and also de-
pends on the types of somatic cells used for re-
programming.

3. iPSCs-derived specific cells can be used to screen vari-
ous candidate drugs for personalized medicine.

Viral vector-based reprogramming has the po-
tential to develop tumorigenesis when trans-
planted.

4. Patient-specific iPSCs can be used to model human ge-
netic diseases.

Forced reprogramming and long-term cultural
adaptation induce genetic mutations in iPSCs.

5. Like ESCs, iPSCs have no moral and ethical issues as it
is derived from the patient’s somatic cells.

Allogenic transplantation of iPSC-derived ther-
apeutic cells causes the rejection of transplants.

In 2009, the first license agreement was signed with
ReproCELL and then with Cellular Dynamics Inter-
national in 2010 for industrialization of technology to
generate clinical-grade iPSC. Later, Fujifilm acquired
Cellular Dynamics International (CDI) and invested
significantly in stem cells to develop safer and efficient
iPSC-based cell therapies23. Now, Fujifilm headquar-
tered in Tokyo is the foremost leader in the field of re-
generative medicine. Afterward, license agreements
have been signed with numerous companies globally
that include 110 in Japan, 46 in North America, 34 in
Europe and 5 in Asia as of April 2019 24.
The fact that iPSCs could be generated from the adult
cells withoutmoral and ethical restrictions, these cells
have been showing potential benefits and growing im-
pact in medicine. Also, iPSC-based clinical studies
have been receiving growing scientific interest and
rapidly increasing in number worldwide. Thus, the
commercialization of these cells represents the pro-
ductive market in the field of regenerative medicine.
Knowing the progressive impact on medicine, Cen-
ter for iPS Cell Research and Application (CiRA) was
established in 2008 to hold the intellectual property
and to foster iPSC technology. Later, on 1 April
2010, CiRA was recognized as an independent insti-
tute at Kyoto University and Nobel Laureate, Shinya
Yamanaka was appointed as a director25. Currently,
CiRA grips basic iPSC technology patents in nu-
merous countries, such as Australia, Canada, China,
France, Germany, Ireland, Italy, Japan, Mexico, Sin-
gapore, Spain, Sweden, UK, and U.S. etc.26. In ad-
dition, CiRA promotes the iPSC stock, iPSC-based
cell therapy, and personalized medicine using iPS
cells. Due to the high demand of iPSC-based clinical
studies, the iPS Cell Stock for Regenerative Medicine

project was started in 2013. Further, they estab-
lished the Facility for iPS Cell Therapy (FiT) to sup-
port the distribution of clinical-grade iPSC to insti-
tutions for developing new medical therapies. Later
in February 2017, Japanese pharmaceutical company,
Sumitomo Dainippon Pharma Co., LTD. started the
construction of manufacturing plant for regenera-
tive medicine and cell therapy to accelerate iPSC re-
search and the advancement of iPSC therapies into
the clinic. The Sumitomo Dainippon Manufactur-
ing Plant for Regenerative Medicine & Cell Therapy
(SMaRT) was established in its Central Research Lab-
oratories at Osaka, Japan. The manufacturing plant,
which cost around 3.6 billion Yen, was completed
on 1 March 2018. There onwards, the plant is en-
gaged in generating iPSC derivatives for the treatment
of age-related macular degeneration (AMD), retinitis
pigments, spinal cord injury, and Parkinson’s disease
etc.27.

iPSC-based pretrial clinical studies in Japan
Thirteen years on, safety, efficacy, and potential ben-
efits of iPSC derivatives has been proved in preclini-
cal models. iPSC is an innovation of Japan, now lead-
ing for quality commercialization of iPSC-derivatives,
and also becoming the world first nation to conduct
pretrial clinical studies. Japanese researchers consider
iPSC as an alternative source for therapeutic cells and
artificial organs for diseases in which human tissues
or organs are inaccessible to investigate. Recognizing
their discovery and productive market, Japan govern-
ment amended the Pharmaceutical and Medical De-
vice Act (PMDA) in Nov 2013 opening door for re-
generative medicine products. Revised PMDA act ac-
celerated the iPSC-based therapy development by set-
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Figure 2: Illustration showing therapeutic benefits of iPSCs in regenerative medicine. Patient-specific iPSCs
were generated and further differentiated into a) retinal pigment epithelium, b) neuron progenitor cells, c) car-
diomyocytes, d) immune cells, and e) platelets to model as therapeutic cells in various diseases. f) iPSC-derived
specific cells can be used for screening the candidate drugs and for personalized medicine. g) iPSCs have been
used to generate the three-dimensional tissues (retinal and brain organoids) to model the organogenesis. h)
clinical-grade iPSC-derived therapeutic cells are used for cell therapy for end-stage diseases.

ting the fastest approval system for clinical trials in the
world28–30. In Japan, therapeutic cells derived from
iPSCs have been transplanted intowet-typeAMDand
Parkinson’s disease, while more clinical studies are
planned for other conditions. In recent years, the
Japan government is setting to host world’s first pre-
trial clinical studies for several diseases and had ap-
proved physician-led clinical trials as listed inTable 2.
The country’s scientists are now leading the way with
clinical translation.
It is obvious that the challenges encounterwhen closer
to clinical trials, but that also leads to the process
for scientific discovery. In 2013, Japan took credit
for historical movement in the race to develop iPS-
based therapies and considered as a landmark year. A
panel of Japan’s Health Ministry approved the project

for autologous transplantation RPE sheets derived
from iPSC in patients with wet-type AMD39. The
project was conducted at RIKEN Center in Kobe,
Japan, which was led by Masayo Takahashi of the
RIKEN Center for Developmental Biology (CDB).
RIKEN is the largest national scientific research insti-
tute supported by Japan’s Health Ministry and exclu-
sively funded by the Japanese government40,41. For
the first patient enrolled, iPSC-derived RPE patch was
transplanted in September 2014. One-year follow-
up observation showed a good safety profile without
significant improvement in visual acuity but stopped
the progression of the disease 42. However, transplant
was halted in second patients due to genomic alter-
ation in the patient’s iPSC-derived RPE cells, owing
to the possible risk of aberrations in DNA copy num-
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Table 2: World’s first iPSC-based pretrial clinical studies approved in Japan

iPSC Derivatives Disease Principal Investiga-
tors

Start of the Clinical Trials References

Retinal Pigment
Epithelium (RPE)

Wet-type age-related
macular degeneration

Masayo Takahashi;
RIKEN Center

12 Sep 2014 Transplanted 31

Dopaminergic Pro-
genitors

Parkinson’s Disease Jun Takahashi;
Kyoto University

Oct 2018
Transplanted

32

Cardiomyocytes Severe Heart Disease Yoshiki Sawa;
Osaka University

16 May 2018
Approved

33

Platelets Aplastic Anemia Koji Eto;
Kyoto University

21 Sep 2018 Approved 34

Neural Cells Spinal Cord Injuries Hideyuki Okano;
Keio University

18 Feb 2019 Approved 35

Corneal Epithelium Corneal Diseases Koji Nishida;
Osaka University

March 2019
Approved

36

Natural Killer T
Cells

Head and neck Can-
cers

Haruhiko Koseki;
RIKEN Center

11 Jan 2019
Planned

37

Candidate Drug
(Rapamycin)

Fibrodysplasia Ossifi-
cans Progressiva

Junya Toguchida;
Kyoto University

1 Aug 2017
Clinical Trial

38

bers (deletions)42. Surprisingly, new regulation was
implemented in regenerative medicine legislation of
Japan in November 2014 that state, “the proposal for
pretrial clinical study should be submitted frommed-
ical but not research institutions”. Thus, patient en-
rollment was immediately halted for RPE cell therapy
in 2015. Later in 2017, allogenic HLA-matched iPSC-
derived RPE cells were transplanted in the second pa-
tient43. Interestingly, Kyoto Hospital made an offi-
cial announcement for establishment of special iPSC
therapy center with 30-bed ward to conduct clinical
studies for testing safety and efficacy of the iPSC ther-
apies on volunteer patients. They aim to finish com-
plete setup by September 2019 and planning to get ap-
proval for iPSC-based product by 2020.

Globalization of Japan iPSC andderivatives
iPSC-based therapies should be available to global
population. Therefore, making availability of qual-
ity iPSC and derivatives become commercially impor-
tant. To move forward with global clinical trials us-
ing iPSC-RPE for treatment of AMD, Healios K.K.
established a patent license agreement with RIKEN
in August 2011. They hold the exclusive worldwide
license covering regenerative products that contain
iPSC-derived RPE cells. Additionally, Healios estab-
lish collaboration with Sumitomo Dainippon Pharma
for joint development of new therapies for wet-type
AMD in Japan and also with National Eye Institute

(NEI) for dry-type AMD in US/EU 44,45. Next, Cy-
nata Therapeutic in joint development with Japanese
company, Fujifilm received approval from the U.K.
and Australia government in September 2016, to be-
gin a clinical trial using allogenic iPSC-derived mes-
enchymal stem cells (MSCs) for treating graft-versus-
host disease (GVHD)46. The world’s first clinical trial
of an allogeneic cell product, “CYP-001” derived from
iPSC begins in both the U.K. and Australia 46. In
this historic trial, Australian regenerative medicine
company is testing product for GVHD 47. GVHD is
a transplant complication, in which the donor’s im-
mune T cells (graft) attack the patient’s healthy cells or
tissues (host) and damage them. iPSCs-derivedMSCs
were implanted, and two years post-implantation data
from all 16 participants are expected to be completed
by May 2020 to evaluate the safety and efficacy.

Japan iPSC banking and online database
for global population
Patient-specific iPSCs are becoming challenging due
to time-consuming to generate iPSC derivatives from
patient somatic cells48, and chance of carrying so-
matic mutation into iPSCs49. Such challenges pose
risk for missing threshold time for transplantation
and effects of mutation inherited from parental cells.
So, there is prerequisite of healthy donor for reduc-
ing the cost and rapid availability for cell therapy to
the patients. To overcome the need of autologous cell
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therapy or immune rejection associated with human
leucocytes antigen (HLA) mismatch50, CiRA is es-
tablishing the iPSC stock for medical use by recruit-
ing the HLA homozygous (HLA-A, -B, and -D.R.)
super donors. iPSCs derived from super donor so-
matic cells reduced the risk of rejection when trans-
planted in patient with heterozygous HLA for same
haplotypes 51. Currently they have 4 HLA homozy-
gous iPSC lines, which cover 40% of Japan’s popula-
tion. In addition, using genome editing technology,
they estimated to generate 10-12 iPSC lines that will
cover more than 90% of world population. “My iPS
cells” project is next in the line to begins from 2025
as disclosed by Yamanaka during his presentation at
ISSCR 2019 annual meeting held between 26-29 June
2019 at Los Angeles, US. Interestingly, Akitsu and his
colleagues generated HLA-C retained iPSCs by allele-
specific genome editing to make immune compati-
ble iPSC that will benefit to most of the global pop-
ulation. First HLA class I pseudo-homozygous iP-
SCs were generated from HLA heterozygous donors.
Then, both allele of HLA-A and HLA-B and mono al-
lele of HLA-Cwere deleted to retain oneHLA-C allele
to generated HLA-C retained iPSCs which greatly ex-
pand donor compatibility with larger populations 52.
Furthermore, with increase in number for iPSC
research in global scenario, several iPSC online
databases, such as eagle-I53, hPSCreg 54, RIKEN
BRC55, SKIP56 were established. Recently, CiRA
professor Wataru Fujibuchi combined all those
databases and released Integrated Collection of Stem
Cell Bank Data (ICSCB) by MIACARM (Minimum
Information About a Cellular Assay for Regenerative
Medicine)57.ICSCB database provides the uniform,
accurate and user-friendly data exchange that will fa-
cilitate the accelerated access to iPSCs data for re-
search.

CONCLUSIONS
iPSCs are promising platform for future medicine,
such as cell-based therapy for reversing diseases, pa-
tient specific-iPSC biobanking to investigate a diverse
range of conditions, use of physiologically relevant
cells derived from iPSC for drug development & dis-
covery, and iPSC-derivatives for toxicology screen-
ing. Because, iPSC was discovered by the Japanese
scientist, the country’s researchers working in the field
of regenerative medicine consider iPSCs as promising
sources for therapeutic cells. Also, the government
of Japan supports for the iPSC research, amended the
regenerative medicine law for fast approval system
for pretrial clinical studies and commercialization of
iPSC-related products by holding basic patent licens-
ing frommost of the countries. To conclude, the iPSC

is a brand source of Japan that provide clinical grade
iPSC and related products worldwide. Also, Japan-
based companies were investing massive funds in the
iPSC-based research and collaborated with multina-
tional companies globally to promote the use of iPSC
for clinical trials.
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